Fast Arithmetic Modulo 2x py ± 1

نویسندگان

  • Joppe W. Bos
  • Simon Friedberger
چکیده

We give a systematic overview of techniques to compute efficient arithmetic modulo 2p±1. This is useful for computations in the supersingular isogeny Diffie-Hellman (SIDH) keyexchange protocol which is one of the more recent contenders in the post-quantum public-key arena. One of the main computational bottlenecks in this key-exchange protocol is computing modular arithmetic in a finite field defined by a prime of this special shape. Recent implementations already use this special prime shape to speed up the cryptographic implementations but it remains unclear if the choices made are optimal or if one can do better. Our overview shows that in the SIDH setting, where arithmetic over a quadratic extension field is required, the approaches based on Montgomery multiplication are to be preferred. Furthermore, the outcome of our search reveals that there exist moduli which result in even faster implementations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Elementary Proofs of the Prime Number Theorem for Arithmetic Progressions, without Characters

We consider what one can prove about the distribution of prime numbers in arithmetic progressions, using only Selberg's formula. In particular, for any given positive integer q, we prove that either the Prime Number Theorem for arithmetic progressions, modulo q, does hold, or that there exists a subgroup H of the reduced residue system, modulo q, which contains the squares, such that (x; q; a) ...

متن کامل

Efficient Modular Arithmetic in Adapted Modular Number System Using Lagrange Representation

In 2004, Bajard, Imbert and Plantard introduced a new system of representation to perform arithmetic modulo a prime integer p, the Adapted Modular Number System (AMNS). In this system, the elements are seen as polynomial of degree n − 1 with the coefficients of size p. The best method for multiplication in AMNS works only for some specific moduli p. In this paper, we propose a novel algorithm t...

متن کامل

Faster arithmetic for number-theoretic transforms

We show how to improve the efficiency of the computation of fast Fourier transforms over Fp where p is a word-sized prime. Our main technique is optimisation of the basic arithmetic, in effect decreasing the total number of reductions modulo p, by making use of a redundant representation for integers modulo p. We give performance results showing a significant improvement over Shoup’s NTL library.

متن کامل

A One-Step Modulo 2+1 Adder Based on Double-lsb Representation of Residues

Efficient modulo 2±1 adders are desirable for computer arithmetic units based on residue number systems (RNS) with the popular moduli set {2–1, 2, 2+1}. Regular n-bit ripple-carry adders or their fast equivalents are suitable for modulo 2 addition. But for the other two moduli a correcting increment/decrement step besides the primary n-bit addition is normally required. Several design efforts h...

متن کامل

Arithmetic Circuits Combining Residue and Signed-Digit Representations

This paper discusses the use of signed-digit representations in the implementation of fast and efficient residue-arithmetic units. Improvements to existing signed-digit modulo adders and multipliers are suggested and new converters for the residue signed-digit number system are described for the moduli . By extending an existing efficient signed-digit adder design to handle modulo operations, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016